
Masaryk University
Faculty of Informatics

A
Building of domain-specific

semantic networks from web
pages

Bachelor’s thesis

Ron Šmeral

Brno, spring 2011

Declaration

Hereby I declare, that this paper is my original authorial work, which
I have worked out by my own. All sources, references and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Ron Šmeral

Advisor: RNDr. Zuzana Nevěřilová

ii

Acknowledgement

I would like to thank the supervisor of my bachelor’s thesis, RNDr.
Zuzana Nevěřilová, for her time and valuable feedback. I would also
like to thank my parents for their patience and the effort they put into
me, promising it was not in vain. Last but not least, my thanks go to
my sister for always helpfully answering my English language-related
questions.

iii

Abstract

The aim of the thesis is to describe the issues related to design of
semantic networks focused on a specific domain and to develop tools
for creation, maintenance and querying of such networks. Specifically,
the method of HTML web page crawling and scraping is described
in detail. The implemented tools are modular and extensible, forming
a framework for further development.

iv

Keywords

semantic network, associative network, crawler, scraping, RDF, RDFS,
ontology, Sesame

v

Contents

1 Introduction . 1
2 Data, information, knowledge 2

2.1 Knowledge representation 3
2.1.1 Metadata . 4
2.1.2 Ontology . 4
2.1.3 Upper ontology 5

2.2 Semantic networks . 8
2.2.1 History . 9
2.2.2 Types . 9

2.3 The road to semantic web 10
2.3.1 Contemporary web 10
2.3.2 Web as a graph 11
2.3.3 Resource identification 11
2.3.4 RDF(S) . 12
2.3.5 OWL . 13

3 Semantic network building toolset 14
3.1 Requirements . 14
3.2 Platform . 15
3.3 Third-party software . 15
3.4 Piped object processor 15

3.4.1 Architecture . 16
3.4.2 Development . 18

3.5 Crawler . 21
3.5.1 Addressed issues 21
3.5.2 Design . 24

3.6 Other modules . 26
3.6.1 Scrapers . 26
3.6.2 StatementMapper 29
3.6.3 SesameWriter . 29

3.7 Usage . 30
4 Semantic network of artworks 33

4.1 Design . 33
4.1.1 Selected sources 35

4.2 Properties . 35
5 Conclusion . 36

vi

1 Introduction

When a human comes across a sentence like “Yesterday, I watched
I Served the King of England”, he may be surprised at first, by the
unusual structure, but provided he has got some common sense, very
soon he will find out what it is meant to express. On the other hand,
a computer trying to analyse such sentence might not reach success
at all, without knowing that I served the King of England is a proper
name of a man-made abstract object – a film, and a work of literature.
In order to make a machine capable of understanding the meaning
of natural language expressions, it is first necessary to translate the
concepts occurring in real world to the language of the machine. This
is the subject of study of knowledge representation.

Automatic analysis of natural language is only one of the many
reasons for construction of knowledge representations. One significant
aspect of knowledge represented in a well-defined structured form is the
possibility to infer new pieces of information by utilising a reasoning
facility. There are also many different types of knowledge representa-
tions, and the one that is the subject of this thesis is called a semantic
network. This structure can be used for various purposes, it can ei-
ther capture the relations between general concepts, thus working as
a schema, or it can contain individual instances and their attributes,
or both at the same time.

The aim of this thesis is to provide facilities for creation of seman-
tic networks designed to contain knowledge from one specific domain.
Moreover, the knowledge that is to be contained in these networks will
be collected automatically, with human intervention only required at
the beginning of the process, to define the patterns, according to which
the data will be collected. The World Wide Web is used as the source
of information.

The following chapter provides more insight into the field of knowl-
edge representation, and the semantic networks in particular. In the
third chapter, the outcome of this thesis – the semantic network build-
ing toolset – is described in detail, followed by the fourth chapter, where
a semantic network of artworks, produced using the implemented tool,
is characterised.

1

2 Data, information, knowledge

In all parts of this thesis, certain key concepts inherently involved in
the field of information science will be dealt with, understanding of
and proper distinction of which is crucial for any further elaboration.
The terms data1, information and knowledge, often juxtaposed with
understanding and wisdom as well, are the ones in question. Only the
former three, however, are of specific interest to the field of knowledge
representation and artificial intelligence, the latter two being of rather
philosophical nature. These concepts are often referred to as the “In-
formation hierarchy” with data and knowledge being at the lowest and
the highest level of abstraction (among these three), respectively.

According to [1], data are symbols, information is data that are pro-
cessed to be useful and knowledge is application of data and informa-
tion. More specifically, data have no significance beyond their existence
and no meaning. For example, the word “blue”, without a context or
association does not convey any information. The phrase “The sky is
blue”, however, is a valid proposition and thus constitutes a piece of
information. The relational association to the word “sky” is what adds
the informational value. The transition from information to knowledge
is not as explicit as the one from data to information. As defined by
Childers in [14, p. 481], knowledge is that which is known and can only
be thought of in relation to a particular knower, existing as electrical
pulses, and it can be disembodied into symbolic representation, thusly
becoming a particular kind of information, not knowledge. Since the
term knowledge can be further divided into three main kinds: practical
knowledge, knowledge by acquaintance, and propositional knowledge
[14], it should be stated that the knowledge that is the subject of this
thesis and ultimately, of all academic fields, is inferential propositional
knowledge. That is such knowledge which is a product of inferences,
such as induction and deduction.

1. In the ongoing dispute concerning the proper usage of the word data, this thesis
takes the side of grammatical correctness and throughout the text, the term is used
as a plural form.

2

2. Data, information, knowledge

2.1 Knowledge representation

As mentioned earlier, knowledge can only exist in relation to a partic-
ular knower. In terms of computer science, this knower is some sort of
intelligent agent that has a knowledge base (KB) and an inferencing
facility, enabling it to draw conclusions from facts already present in
the KB. Having defined the concept of knowledge, a proper definition
of knowledge representation is still due. Despite it being one of the core
concepts in the field of artificial intelligence, its definition is similarly
to that of knowledge, not a simple one. Davis, Shrobe and Szolovits in
[3] try to answer the question – What is knowledge representation? –
by defining five distinctly different roles it plays. First, KR is most fun-
damentally a surrogate, enabling an entity to determine consequences
by thinking rather than acting. Then it is also (2) a set of ontological
commitments, (3) certain fragmentary theory of intelligent reasoning,
(4) a medium for pragmatically efficient computation and lastly (5)
a medium of human expression. Further explication of these roles is,
however, beyond the scope of this thesis.

There are many factors to consider when designing a knowledge
representation, one of the most important being the expressivity of the
KR, with consistency and completeness immediately following. Gener-
ally, it holds that expressivity of the KR is inversely proportional to
effectivity of automatic inferencing. Therefore, one of the key problems
is finding a KR with sufficient expressive power, capable of reasoning
within given resource constraints.

Various kinds of representation techniques have been developed and
used, each suitable for a specific group of problems. For example frame
systems, introduced by Minsky, where a frame is defined as “a data-
structure for representing a stereotyped situation” [10], aim to provide
a framework for representing knowledge, based on the notion of frames,
slots and fillers. Another approach to KR is that of semantic networks.
These are based on interrelation of concepts using binary predicates
and are most commonly implemented using directed graphs. Semantic
networks are discussed in more detail further in this chapter.

3

2. Data, information, knowledge

2.1.1 Metadata

One of the most important information science-related concepts is me-
tadata. As the prefix meta suggests, metadata can be defined as data
about data. More precisely, metadata is “structured information that
describes, explains, locates, or otherwise makes it easier to retrieve,
use, or manage an information resource.” [11] This term is used for
two significantly different concepts, one is specification of data struc-
tures, called structural metadata, the other is descriptive metadata,
for describing resources. This latter kind can be further separated into
at least two other types, one that describes the data themselves, and
the other, called administrative metadata, which describes information
concerning management of the resource, like access rights or creation
date.

Metadata was traditionally found in library catalogues, but is today,
in the age of digital media, of much higher utility than it was in the past.
To provide interoperability between disparate metadata producers and
consumers, schemas, vocabularies and taxonomies were introduced, like
the MPEG-72 standard for multimedia or the Dublin Core3 metadata
set for general description of resources. Some metadata schemes also
specify the syntax for encoding of their elements, which is often based
on SGML or XML, but some schemes are syntax independent.

2.1.2 Ontology

In the broader meaning, an ontology is the study of the categories of
being, or in other words, the fundamental classes of entities, and their
relations. In terms of computer science, ontology is commonly defined,
for the sake of brevity (but also lack of clarity), simply as “explicit spec-
ification of a conceptualization” [5]. This definition, however, does not
shed much light on the computer science-related meaning of this term
adopted from philosophy. Author of the above mentioned terse def-
inition fortunately offers an elucidation: “an ontology defines a set of
representational primitives with which to model a domain of knowledge

2. MPEG-7 is an ISO/IEC standard, also known as Multimedia Content Descrip-
tion Interface, used for embedding descriptive metadata in multimedia.
3. Dublin Core is an ISO metadata standard containing only 15 basic elements
for description of resources like books, digital video, sound, image, text, and web
pages.

4

2. Data, information, knowledge

or discourse” [6]. These primitives are classes, attributes and relation-
ships. Definitions of these elements can contain information about their
meaning and constraints on their application.

Ontologies are usually formulated by means of representation lan-
guage of some sort, which is close in its expressive power to logical
formalisms. In practice, these languages are usually based on predicate
logic or description logic. Some examples of the former are Common
Logic, CycL or KIF, and instances of the latter are KL-ONE, or two
that will be discussed further in this text – RDFS and OWL.

In summary, an ontology can act as a skeletal structure of a knowl-
edge representation, providing a conceptual and computational model
of certain problem domain, focusing on its form rather than the content.

2.1.3 Upper ontology

An upper ontology, sometimes called foundation ontology or top-level
ontology, is an ontology which expresses relations between the most
general concepts common across all domains of knowledge. It usually
takes the form of a hierarchy of classes of entities with associated rules
constraining their application. The main function of an upper ontol-
ogy is providing a semantic interoperability between many otherwise
disparate ontologies.

Many attempts have been made to create a single all-encompassing
upper ontology but there are arguments standing against feasibility of
such structure. In order to create such hierarchical system of concepts,
the state of the world has to be observed from many perspectives,
since the views on precise definition and classification of certain general
concepts might differ across disciplines and even across cultures. Thus,
finding one such representation, which would embrace all conceivable
concepts with all their relations and still remain logically consistent,
would be an effort that is very likely to turn out ultimately pointless.

For computational use, however, the requirement is not to have
a single ultimate upper ontology, but rather one that is sufficiently
expressive and detailed to support all its functions. Various such on-
tologies have been developed, some of which have been reviewed and
compared in [8]. There have also been efforts to develop a standard
upper ontology, specifically it was the main objective of the IEEE SUO

5

2. Data, information, knowledge

working group4, but there are indicators5 suggesting this goal will not
be met. The upper ontologies currently in use vary greatly in their di-
mensions, degree of abstraction and elaboration, and also, despite the
concept of an upper ontology inherently involving universal applicabil-
ity, in their intended application.

Cyc

One of the earliest successful attempts was that of the Cyc project,
founded in 1984. The Cyc KB is a modular ontology and a knowledge
base divided into many smaller microtheories which group contained
statements into logically consistent units focused on a specific realm
of knowledge. Extent of the knowledge base is one of the larger among
those reviewed in [8], containing some 300 000 concepts, 3 000 000 facts
and rules and 15 000 relations.

SUMO

The Suggested Upper Merged Ontology is an ontology created by merg-
ing publicly available ontological content into single comprehensive
structure. SUMO consists of multiple modules: the SUMO upper on-
tology, the MILO (Mid-level Ontology) and several domain ontologies.
All of the modules together consist of 20 000 terms and 60 000 ax-
ioms, making it one of the largest public formal ontologies. All of the
contained concepts are mapped to WordNet synsets.

WordNet [4]

Notwithstanding the original designation of WordNet as a lexical data-
base, it has been used extensively in many applications in various other
ways, including its use as a simple class hierarchy or as an upper on-
tology. Additionally, WordNet contains glosses for many of the terms,
making it also a human-readable lexicon of English language. It has

4. SUO WG, also known as IEEE 1600.1. Website of the project, http://suo.
ieee.org/, seems to be rather out of date, last updated in 2003.
5. Judging by a message in the mailing list of SUO WG, http://suo.ieee.org/
email/msg13625.html, written by a respected computer scientist John F. Sowa, the
efforts of the working group are getting steered towards a different goal – creating
a registry of ontologies.

6

http://suo.ieee.org/
http://suo.ieee.org/
http://suo.ieee.org/email/msg13625.html
http://suo.ieee.org/email/msg13625.html

2. Data, information, knowledge

been employed in a wide range of research and commercial applications
and has also given rise to many extensions and similar projects.

Terms in WordNet are organised so as to capture the complex struc-
ture of natural language, capturing various semantic relations between
concepts. The main constituent element of the lexicon called synset is
a set of synonymous words or collocations, and from the perspective of
ontology engineering is analogous to a class. Synsets are interconnected
by semantic relations, some of which are:
hyponymy: Analogous to an IS-A relationship. X is a hyponym of

Y if every X is a kind of Y. For example, actor is hyponym of
person.

hypernymy: Inverse of the hyponymy relationship. X is a hypernym
of Y if every Y is a kind of X.

holonymy: The whole–part relationship. X is a holonym of Y if Y
is a part of X. For example, body is a holonym of head.

meronymy: Inverse of the holonymy relationship. X is a meronym
of Y if X is a part of Y.

WordNet contains other relations as well, but those listed here are the
most important for this text. The hypernymy relationship organises the
synsets into a hierarchy of classes. An example of the hierarchy can be
seen in Figure 2.1 where entity is the top-level element. This hierarchy
is what enables the use of WordNet as an ontology. This application
is, however, not straightforward since the lexicon was not originally
designed for this purpose and contains certain semantic inconsistencies
and insufficiencies such as the lack of distinction between the subtypeOf
and instanceOf meanings of the hyponymy relation. Despite these defi-
ciencies, WordNet has been successfully employed in several projects as
an ontology, in some cases even without corrections to the mentioned
insufficiencies.

Originally, the lexicon is contained in a custom knowledge repre-
sentation format, however, many other are currently used, for example
the OWL representation6 which emerged as a part of the W3C Se-
mantic Web Activity. The original WordNet database only covers En-
glish language but projects like EuroWordNet or BalkaNet have created

6. http://www.w3.org/TR/wordnet-rdf/

7

http://www.w3.org/TR/wordnet-rdf/

2. Data, information, knowledge

person, individual, someone, somebody, mortal, soul
=> organism, being

=> living thing, animate thing
=> object, physical object

=> physical entity
=> entity

Figure 2.1: Word sense hierarchy in WordNet

wordnets for several other languages. The Global Wordnet Association
coordinates production and linking of these mutations.

2.2 Semantic networks

A semantic network, also called associative network is a form of knowl-
edge representation which expresses semantic relations among concepts
in certain domain of knowledge. Most commonly it is specified us-
ing edge-labeled directed graphs where vertices represent concepts and
edges correspond to the relations. A semantic network is a form of
logic and the information contained in the structure can be expressed
in predicate logic using binary predicates. An example of a semantic
network can be seen in Figure 2.2. It is worth noting, that despite most
commonly being notated as graphs, semantic networks are not a data
structure, but merely a representation.

actor

movieThe Shawshank Redemption

Morgan Freeman instance of

person

is a

acts in

instance of

duration

142

01-06-1937

birth date

Figure 2.2: A simple semantic network. Depicts three classes, two in-
stances, two attribute values and relations.

Semantic networks are used in several disciplines for many purposes.

8

2. Data, information, knowledge

In psychology, they were implemented as a mechanism for modelling
human cognitive processes and the concept of semantic memory. In
linguistics, the inheritance of properties is among the more significant
qualities of semantic networks, supporting disambiguation in natural
language processing. Among their more important applications is that
in artificial intelligence, where they are used as a form of knowledge
representation supporting intelligent reasoning.

2.2.1 History

The first use of semantic networks dates back to 300 AD and is at-
tributed to Greek philosopher Porphyry, which also illustrates the fact,
that the idea of using nodes and arcs for representation of interrelation
of concepts has been employed in philosophy, psychology and linguistics
long before their contemporary computer-related applications. Charles
S. Peirce has proposed this way of notation in 1909, calling it existential
graphs. The term ‘semantic network’ has first been used by cognitive
scientist Ross Quillian in 1968 in his thesis where he used it to describe
the organisation of human semantic memory.

The first application in computers is ascribed to Richard H. Richens
who used semantic networks as an interlingua for machine translation
of natural language. Along with the advent of hypertext systems in
the 1980s, the idea of semantic links was brought to light, providing
simple semantics to links between hypertext documents, thus creating
a network of documents. This idea was incorporated into the HTML
standard in the form of rel and rev attributes of hyperlinks. However,
this effort partly missed its aim, since HTML does not restrict the values
of these attributes, it merely suggests the correct usage. In the recent
years, new approach for describing semantic properties of hypertext
content has emerged, called microformats, which reuses existing HTML
tags to convey metadata.

2.2.2 Types

According to an article [13] by John F. Sowa, semantic networks can
be classified into following categories:

Definitional networks form a generalisation hierarchy by empha-
sizing the subtype relation and support inheritance of properties

9

2. Data, information, knowledge

from a supertype.

Assertional networks used primarily to assert propositions.

Implicational networks with implication as the primary relation.

Executable networks include a mechanism which can perform in-
ferences, pass messages or search for patterns and associations.

Learning networks are capable of acquiring knowledge from exam-
ples and may modify the network in the process.

Hybrid networks combine some of the above mentioned techniques.

2.3 The road to semantic web

Semantic web is a name (quickly becoming a buzzword) for a num-
ber of technologies and standards sharing the common goal of making
the internet easier to comprehend by non-human agents, which in turn
should lead to the internet being more effectively usable by humans. Al-
though the internet was originally designed for exchange of documents
containing human readable information, today many benefits arise from
enabling the web with technologies that make it more comprehensible
for insentient agents, one of the most important being substantially
improved effectivity of search engines.

2.3.1 Contemporary web

Web pages nowadays are composed mainly of semi-structured docu-
ments marked up using HTML. Documents marked up in this lan-
guage have a tree structure with elements containing text content or
other HTML elements. The structure describes mainly presentational
qualities of the document. Even though HTML has some elements that
partly describe the semantics of the content, the granularity of infor-
mation provided about its meaning is not sufficient for machine pro-
cessing and automatic data extraction. Moreover, many of the elements
are often misused, not containing the information they were designed
to contain. All of this implies the need to use specialised tools in order
to extract information from websites in an automated fashion.

10

2. Data, information, knowledge

2.3.2 Web as a graph

One of the key features of hypertext is the ability to enrich text with
links to other hypertext documents, which can be immediately accessed,
thereby forming a network of documents – a web. These links are called
hyperlinks and in HTML they are represented by the anchor element
with the href attribute, like so:

Link text

By virtue of this network structure, the web can be seen as a graph,
with documents as nodes and links as edges, making it possible to au-
tomatically collect information from online resources by walking the
graph and continuously visiting all encountered links. This process
called crawling has been used extensively mainly in search engines,
which crawl the web in order to index its contents. The agents per-
forming this task are usually called web robots or crawlers.

2.3.3 Resource identification

The resources composing the web need to be uniquely identified, ex-
actly addressed and named. There are three main standards serving this
purpose – URL, URI and URN. Often, even in technical literature, the
terms URI and URL are incorrectly interchanged [9, p.2]. A clarification
is in order.

URI

The Uniform Resource Identifier is a standard for resource identification
in the internet with a prominent role in the semantic web. The URI
only serves the purpose of unique identification of resources (however,
not necessarily globally unique), not their location. The syntax of URI
consists of a scheme name followed by a colon character and a scheme-
specific part. URIs are either absolute, fully identifying a resource, or
relative, containing only some trailing component of the URI. Relative
URIs can be resolved to absolute URIs by merging with some absolute
base URI according to a fixed algorithm.

11

2. Data, information, knowledge

URL

The Uniform Resource Locator is the prominent means of resource
addressing used in the internet. It is a subclass of URI and is specified
by an absolute path to a resource, located on a machine connected to
the internet, that can be dereferenced by issuing a specific request to
this address. The syntax of URL consists of the scheme name (also
called protocol), host name and optional port, path of the document
and possibly a query string and a document fragment.

http://www.example.com:80/index.php?arg=value#part1

scheme host port path query string fragment

Figure 2.3: An example of a URL and its components.

URN

The Uniform Resource Name is a subclass of URI that uses the urn
scheme and is a persistent location-independent resource identifier. The
syntax is as follows: urn:nid :nss , where nid is a namespace identi-
fier and nss is a namespace specific string. It is often compared to
ISBN, which too uniquely identifies a resource (a book), but conveys
no information about its availability and location.

2.3.4 RDF(S)

The Resource Description Framework is the name for a set of W3C
specifications originally designed as a metadata model, now used as
a general method for conceptual description of web resources. These
descriptions are realised by statements, called triples in RDF, which
have the form subject–predicate–object.

RDFS stands for RDF Schema and together with RDF forms an
extensible language for knowledge representation. It provides a vocab-
ulary for description of ontologies. Both, RDF and RDFS are principal
elements of Semantic Web. These specifications are not bound to any
specific formats, but the most common serialisation format is XML.
URIs are used for resource identification.

12

2. Data, information, knowledge

2.3.5 OWL

The Web Ontology Language is an ontology language with strong log-
ical foundations, having model-theoretic formal semantics. More pre-
cisely, it is a family of languages with different levels of expresiveness
– OWL Lite, OWL DL and OWL Full. The DL and Lite variants
are based on description logics and thus have well-understood com-
putational properties and sound, complete, terminating reasoners exist
for these languages. OWL is designed to be generally compatible with
RDFS, OWL Full is a semantic extension of RDF.

13

3 Semantic network building toolset

After having established the theoretical foundations, the stage is now
set for putting the theory into practice. In this chapter, we provide
detailed look at the design and implementation of a modular and ex-
tensible toolset for building domain-specific semantic networks. From
now on, this tool shall be referred to simply as SemNet.

The main purpose of SemNet is automated collection of unstruc-
tured or semi-structured data from web resources and their transforma-
tion into a machine readable representation – a semantic network. This
process is split into several stages, each carried out by a separate mod-
ule. This modular system based on object processors provides a solid
and flexible platform for development of data processing chains and is
described in section 3.4. There are four of these processors in SemNet.
The first and the most sophisticated is the crawler, whose functionality
is discussed in section 3.5, followed by description of scraper, statement
mapper and Sesame writer in section 3.6. Details of configuration and
execution of the system are provided in section 3.7.

3.1 Requirements

The developed software is, in the first place, intended for immediate
usability, not only for demonstration of its capabilities (not only a proof
of concept). Therefore certain key requirements should be met, which
can be summed up as follows:

independent operation: After proper configuration, the system has
to be capable of unattended operation, not requiring any user
interaction during processing.

robustness: Implied by the need for independent operation is the
necessity of certain amount of resistance against adverse condi-
tions. The system must handle errors gracefully and maintain
a log of operation.

extensibility: The system should be designed so as to provide the
potential of extending its features, thus it must be modular and
well documented.

14

3. Semantic network building toolset

3.2 Platform

One of the secondary objectives of SemNet is cross-platform opera-
tion. This requirement is, to a large extent, satisfied by the imple-
mentation being written completely in Java, a popular cross-platform,
object-oriented, bytecode-compiled, strongly-typed programming lan-
guage. The only other requirement is a RDBMS – a relational database
management system. Consequently, the system should run on all major
platforms currently in use. However, correct operation has only been
tested on a system with the following parameters:

• Windows 7 64-bit operating system

• JDK 1.6.0_20

• PostgreSQL 9.0.3 64-bit

• Dual-core Intel Pentium processor, 4 GB RAM

The primary development environment used was NetBeans IDE 6.9.1
with IvyBeans plugin for dependency management.

3.3 Third-party software

As mentioned earlier, one technology SemNet depends on is a RDBMS.
Specifically, the PostgreSQL database was used in the course of de-
velopment. In order not to reinvent the wheel, several third-party li-
braries were employed for specific tasks. The RDF store used for knowl-
edge persistence is Sesame1. Configuration of all components is con-
tained in XML files and XStream2 is used for (de)serialisation. The
HTMLCleaner3 library is used for parsing of HTML files.

3.4 Piped object processor

Piped object processor (POP) is the name given to the lowest layer
of the implementation. It is a construct inspired by the design pattern

1. Sesame – http://www.openrdf.org/
2. XStream – http://xstream.codehaus.org/
3. HTMLCleaner – http://htmlcleaner.sourceforge.net/

15

http://www.openrdf.org/
http://xstream.codehaus.org/
http://htmlcleaner.sourceforge.net/

3. Semantic network building toolset

called Chain of Responsibility. The POP is based on the notion of
processing chains where information flows from the input to the output,
passing through arbitrary number of object processors, each of which
might perform some transformation on the received information or emit
new pieces of information based on those received. Only discrete pieces
of information are exchanged, not continuous data streams. Information
is encapsulated in containers4 called simply objects, since POP is based
on Java, where the top-level element in type hierarchy is Object. Any
Java class may serve as a container.

3.4.1 Architecture

The main reason for the chosen behavioural pattern is to support the
idea of loose coupling of components by splitting functionality into
smaller units – the object processors. These processors are connected
to form a chain called a pipe, which is responsible for state management,
input/output type checking and execution. An illustration of the system
can be seen in Figure 3.1.

source filter sink

...

Figure 3.1: An illustration of object processors. One object source, one
or more filters and a sink.

Processing context

Despite the processors operating mutually independently, a communi-
cation facility is necessary in order to ensure a certain degree of flexibil-
ity and resource efficiency of the system. For this purpose, the process-
ing context has been introduced. It is a memory space shared by all the

4. Throughout this text, the term container will be used to denote a Java class
(or its instance), which does not implement any functionality, and only holds data
– other objects or literals. Such container roughly corresponds to a JavaBean.

16

3. Semantic network building toolset

object processors in a pipe, implemented as a map of named param-
eters. Its primary function is that of a container for shared resources,
like database connections, but it could be possibly used also for direct
communication between processors, by including some sort of message
dispatcher in the context. This would, however, go even further against
the principle of loose coupling and inherent linearity of the processing
chain. The other function of context implemented in POP is storage of
runtime statistics of processors such as performance or error counters.

There is a special type of processor in POP, designed specifically
to work with the processing context – the attached processor. It has
got read/write access to all context parameters, all object processors
and the pipe. A variety of applications can be found for such facil-
ity, including persisting and analysis of statistics, state monitoring and
management of the pipe and possibly resource injection as well. All of
this can be accomplished by virtue of fine-grained control over the life-
cycle of the pipe and the processors, which is split into several phases,
described further in section 3.4.2.

Object processors

As seen in Figure 3.1 on page 16, there are three types of object proces-
sors, differentiated by their role and valid position in the chain. These
types are:

Object Source: This type of processor must be placed first in the
chain, since the pipe wouldn’t work without one and it is not
allowed on any other position. As the name implies, it is a source
of objects, constructed by the processor using data from any
– very likely an external – resource, and emitted at any rate.
For instance, it might process user input, perform an automatic
collection of data from the web, or react to remote invocation.

Object Filter: An object filter is an intermediate stage in the pro-
cessing, where transformations of objects may take place. Fil-
ters can behave in several ways. It can either simply change
attributes of received objects and pass them forward, or it can
receive an object of one type and emit any number of objects
of other type. The received objects, however, do not need to be

17

3. Semantic network building toolset

affected at all, with the processor acting as a ‘transparent filter’,
like a counter.

Object Sink: The object sink is the terminal stage of the pipe. Its
primary purpose is to persist received objects, either to a file
system, a database, or any other form of storage.

The default implementation was developed so as to support the idea of
mutual independence of processors also in terms of execution and per-
formance. All processors are executed in separate threads and objects
are passed using concurrent queues. Asynchronous operation eliminates
the waiting for adjacent processors. Should a computation-intensive
step slow down the processing, it is advisable to parallelise the task if
possible, to increase throughput of the processor.

3.4.2 Development

API

The API of POP consists of several interfaces and classes. The in-
terface representing object processors is called, as would be expected,
ObjectProcessor and the roles of processors are represented by the
ObjectSource and ObjectSink interfaces. POP makes use of Java An-
notations to improve readability of code and to simplify certain declara-
tions. One example of this is the ObjectProcessorInterface annota-
tion type, which is used to declare input and output type of a processor.
The Object class is used as a wildcard, allowing any object in or out
of the processor.

The different roles of object processors, namely object source, filter
and sink are implemented by LocalObjectSource, LocalObjectFilter
and LocalObjectSink classes, respectively5. Reading the above men-
tioned description of class hierarchy, an observation can be made, that
there is no ObjectFilter interface for the corresponding local im-
plementation class. Such observation would be correct and is justi-
fied by the LocalObjectFilter implementing both ObjectSource and
ObjectSink using delegation to instances of LocalObjectSource and

5. The prefix ‘Local’ suggests that the processors can only be executed locally, in
one virtual machine, as opposed to being distributed across machines, which could
be expected from a more advanced data processing system.

18

3. Semantic network building toolset

Figure 3.2: A chain of object filters, illustrating the delegation of func-
tionality to an object source and a sink.

LocalObjectSink. This is illustrated in Figure 3.2. Common func-
tionality of all implementing classes is included in the abstract class
AbstractObjectProcessor.

Lifecycle

The main class that manages the lifecycle of object processors is Pipe.
An example of how a simple Pipe is instantiated and started can be
seen in Listing 3.1. Methods for creation, initialisation, starting and
stopping of pipes are provided. When the pipe is started, it sets the
context on all processors, and calls their callback methods, allowing
them to initialise their state and access the context.

Listing 3.1: Starting a pipe

ObjectProcessor[] processors = {
new MessageSource(),
new TextFilter(),
new PersistentStore()

};
Pipe pipe = new Pipe(processors);
pipe.start(true);

Initialisation of processors is carried out in several phases. Firstly,
the processor can be initialised by calling its initialize method, which
takes one argument – a map of parameters. It is a substitute for ini-
tialisation with constructor, which must be parameterless. Then, in the
start method of Pipe, the initWithContext and initPostContext
can be used to access the context immediately after its association to

19

3. Semantic network building toolset

the processor, and after it has been associated with all processors, re-
spectively.

In order to stop the pipe, the requestStop method of only the first
processor is called. Subsequently, the following processor encounters an
exception while trying to read an object from the empty buffer of the
preceding processor, and handles it by stopping as well, which causes
a chain reaction leading to stopping of all processors.

Developing an object processor

When a new object processor is developed, it should extend, depend-
ing on its type, one of LocalObjectSource, LocalObjectFilter or
LocalObjectSink, from which it inherits all the core functionality. For
a minimal implementation, the only method that needs to be over-
ridden is process, which, in the default implementation of the run
method (which can be overridden if necessary) is called in an infinite
loop, until the processor is stopped. In the process method, the ex-
pected behaviour of the processor is such, that it uses the read (in case
of filter and sink) and write (in case of source and filter) methods, to
retrieve and submit objects from and to the buffers of the adjacent pro-
cessors. To illustrate how little code is required to implement a simple
processor, Listing 3.2 shows the process method of a putative object
filter (whose input and output type is String), which simply converts
a string to upper case.

Listing 3.2: The process method of a simple object filter

String inStr = read();
inStr = inStr.toUpperCase();
write(inStr);

There are, however, several other overridable methods, which provide
fine-grained control over the behaviour of the processor. The initiali-
sation-time methods were already described in the Lifecycle section.
Another two methods that can be used to perform actions during cer-
tain lifecycle phases are preRun and postRun, called as the first and
the last statement in the default run method, respectively. Also, the
option to react to the event of an adjacent processor having stopped is
provided by means of handleStoppedSource and handleStoppedSink.

20

3. Semantic network building toolset

3.5 Crawler

The central part of SemNet is the crawler, implemented in the class
HTMLCrawler. It is a web robot, which collects data from HTML web
pages according to user-defined rules. Being an internet agent, the
crawler has to cope with the vast diversity of the medium in many
aspects, be it the various character encodings in use, different URLs
corresponding to the same resource, or the countless ways of writing
faulty HTML code. The methods applied to tackle these and some other
issues are described in the following section.

3.5.1 Addressed issues

The crawler is designed to handle the most common situations that
can be encountered while walking the web graph and the peculiarities
pertaining to many web technologies.

URL normalisation

Ideally, a one-to-one correspondence between a URL and a resource
would exist in the internet. However, in reality, it is seldom the case,
despite the word uniform in URL suggesting some sort of homogeneity.
On the contrary, resources can be very often accessed by many different
URLs. For example, these two URLs reference the same resource:

HTTP://WWW.EXAMPLE.COM/some/../resource_1?a=1&b=2

http://www.example.com:80/resource%5f1?b=2&a=1&#part2

And since in the course of its operation, the crawler searches for, stores
and dereferences URLs, these variations in resource identification are
undesirable, at least in order to eliminate duplicate requests. A process
known as URL normalisation is used to compensate for this deficiency.

Even though there is no general agreement on what a normal form of
a URL would be, there are several most commonly used techniques for
making the resource locators somewhat more uniform. In SemNet, URL
normalisation is performed by the normalize method of the URLUtil
class, which performs the following steps, some of which are based on
the suggestions found in [2] and [7]:

21

3. Semantic network building toolset

• case normalisation – since the host part of URL is case insen-
sitive, it is transformed to lower case,

• removal of standard port – certain protocols are associated
to specific port numbers (e.g. HTTP has port number 80), in
which case the port number need not be specified,

• decoding of unreserved characters in path – characters
that are encoded despite being unreserved are decoded to their
ASCII representation,

• parameter sorting – since the order of parameters in the query
string is arbitrary, they are sorted by a fixed algorithm,

• capitalisation of percent-encoded octets – letters in the
encoded representation of a character are converted to upper
case (%3f becomes %3F),

• path normalisation – relative path references, also called dot
segments, are resolved (/some/../path becomes /path),

• removal of document fragment – the fragment only marks
a position inside the referenced document, therefore it is irrele-
vant in terms of resource identification.

Character set detection

Due to the internet being an international medium containing doc-
uments written in many different languages, various coding schemes
called character sets (or simply charsets) have been developed to en-
code the characters of various scripts. The UTF-8 charset has become
dominant for the web, albeit not ubiquitous. Therefore, knowing what
encoding a web page uses is critical for correct decoding of characters.
The class CharsetDetector is responsible for detecting the charset used
in a resource, using the following three methods, in the given order, re-
turning the first found result:

1. reading the Content-Type HTTP header,

2. parsing the HTML meta tag with http-equiv="Content-Type",

22

3. Semantic network building toolset

3. guessing the charset using an external library6.

Invalid HTML markup

Despite HTML being a standard defined by W3C, the official authority
for web, many web pages contain markup that does not comply to the
rules defined in the specification. Occurrence of these syntax errors is
further sustained by the fact, that all the popular web browsers have
overly lenient HTML parsers. Thus the HTML parsing module of the
crawler needs to possess similar qualities in terms of error tolerance
as the ones in the browsers do. And due to such parsers being very
complex, an external library – HTMLCleaner is utilised for this task.

Connection management and HTTP requests

Throughout the process of crawling, thousands of HTTP connections
to servers are established. There are several parameters that can be ad-
justed, like the connection and read timeout, whether or not to follow
redirects, or the user agent string. In order to provide consistent pa-
rameters for all connections and to simplify these adjustments, a simple
class called ConnectionManager is used. This class also takes care of
connection retrying, in case of an I/O error.

Since servers do not have unlimited processing power and network
capacity, internet agents should respect certain rules of fair use. One of
the most important parameters that need to be regulated is the rate at
which an agent issues HTTP requests. Also, certain pages of a web host
might not be suited for automated processing. For this purpose, one de
facto standard has been around for many years – the Robots Exclusion
Protocol7, also called robots policy, which offers a way for host owners
to set rules for the behaviour of web robots. The SemNet crawler uses
the class RobotsPolicy to obey this policy, while still providing the
option to ignore it.

6. The third-party library used for charset detection is juniversalchardet, available
at http://code.google.com/p/juniversalchardet/.
7. Robots Exclusion Protocol – http://www.robotstxt.org/

23

http://code.google.com/p/juniversalchardet/
http://www.robotstxt.org/

3. Semantic network building toolset

3.5.2 Design

The SemNet crawler is not a typical crawler inasmuch as it is not de-
signed to crawl the whole web and index its contents, but its desig-
nation is much more specific. Only user-defined hosts are visited and
only links matching defined patterns are collected. Processing of data
retrieved from the visited pages is carried out in a different module –
in the scrapers.

Since the primary purpose of the crawler is to collect data for build-
ing of domain-specific semantic networks, it is first necessary to identify
the hosts which contain information pertaining to the domain. Sec-
ondly, a description of the entity types that are to be retrieved must be
provided. It is worth noting, that functionality of the crawler has two
important preconditions:
• the entity types collected from the host must be distinguishable

by their URLs, i.e. the URL of a resource should contain some
indication of what entity type it represents (for example, in some
film database, the URL pointing to a resource which describes
an actor, could have the path part begin with /actor/ followed
by a unique identifier of the instance),

• every resource representing an entity must be uniquely identified
by a URL.

These might seem like rather strong assumptions, but could be justified
by another assumption, that once a host contains high-quality informa-
tion resources, very likely the method of addressing these resources will
be of similar quality. Based on these ideas, the crawler identifies entity
types by their URL patterns – regular expressions matching the URLs
of all entities of that type, on one particular host. In addition to this
kind – the entity URLs, the crawler takes into account one other critical
concept, called source URLs – the resources which themselves do not
represent any distinguishable entity, but contain links to entities on the
same host. Indexes are a good example of this concept.

Finally, the crawler provides two options that affect the progress of
crawling:
• the update frequency in days of both, the source and the entity

URLs, which signifies how often the resource should be visited
and checked for new links,

24

3. Semantic network building toolset

• the weight of an entity type, which determines the ratio of the
entities visited in the process. For example, if A has weight of 1
and B the weight of 2, provided there are enough A’s and B’s
on the host, the ratio of visited links by their entity type will be
in every moment close to 2:1, in favor of B.

These design decisions are reflected in the model by means of the
HostDescriptor and EntityDescriptor classes, which act as contain-
ers for the description of hosts and entities. The entity descriptor applies
to one specific entity type of one host and contains:

• URL pattern of the entity type (as a path relative to the base
address of the associated host) and its update frequency,

• set of scraper configurations,

• ‘weight’ of the entity.

The host descriptor describes one web host and consists of the following
fields:

• base URL of the host – the address against which the relative
paths of patterns are resolved,

• set of source URLs and their update frequencies,

• set of entity descriptors,

• other optional parameters, such as a fallback charset (used in
case no charset is found using the default methods), the crawl
delay (time interval between two requests to the same host) and
an option to visit the source URLs first in every run of the
crawler.

There is one more container class used for configuration of the crawler,
called CrawlerConfiguration, which contains a set of host descriptors
and some additional settings of the crawler. One crawler configuration
should correspond to one domain-specific semantic network that is built
using SemNet. An example of the configuration in XML format can be
seen in Appendix A.

25

3. Semantic network building toolset

Low-level design

With modularity in mind, the URL frontier – a core part of a crawler’s
functionality, is implemented separately from HTMLCrawler, in class
URLManager that works in cooperation with HostManager, which pro-
vides methods for working with host and entity descriptors. The URL
manager is responsible for storage and retrieval of the URLs used by
the crawler. The SemNet implementation employs a relational database
to maintain the store.

Even though SemNet is not specifically tuned for high performance,
certain measures have been applied to increase effectivity of the pro-
cessing. Most importantly, the crawler is multithreaded, with one or
more crawling threads per host. This allows for simultaneous crawl-
ing of several hosts without unnecessary waiting, and ensures optimal
throughput of the crawler. Moreover, URLs that are to be visited are
prefetched in a separate thread, in order to eliminate prolonged wait-
ing for database operations. However, concurrency comes at a cost
of increased complexity of the implementation and higher probabil-
ity of errors arising thereof. The main technique used to avoid common
problems related to concurrent operation – memory inconsistencies and
thread interference – is the use of locks on various levels, like the mon-
itor locks intrinsically present in Java.

The process of collecting and visiting internet links is pointless with-
out processing the resources represented by the collected URLs. Again,
for the sake of modularity, this processing step called scraping has been
detached from the crawler into a separate processor, described in the
Scrapers section along with the type of objects flowing from the crawler
to a scraper.

3.6 Other modules

3.6.1 Scrapers

Once the crawler visits a web page, parses its HTML code, and collects
matching URLs, the parsed document is passed forward in the process-
ing chain, to the scraper. The EntityDocument class is the container
used for this purpose and contains:

• base URL of the document, which is either specified by the

26

3. Semantic network building toolset

HTML <base> tag, or else the URL of the document is used,

• absolute URL of the online resource, where the document origi-
nated,

• a descriptor of the entity (instance of EntityDescriptor),

• a DOM tree representation of the document.

To explain the functioning of these processors, a short introduction to
its core principle follows.

Scraping

Scraping is the process of extracting useful data from a web resource.
The main purpose of scraping is the transformation of information ex-
pressed in natural language or in some non-standard structure into
a machine-processable form, with the objective of creating a knowledge
base of some sort. The following example illustrates why this process is
necessary: suppose there is a web page about a movie, which contains
the following text:

The Shawshank Redemption
USA, 1994, 142 min.

A human reading this text would assume, that there is a movie called
The Shawshank Redemption, which was shot in USA in 1994 and is
142 minutes long. Such assumption is based on the experience, that
when within a text, a name of a country, a year and a temporal quan-
tity are situated next to a name of a movie, they usually denote the
country of origin, the year of release and the duration of the movie,
respectively. An insentient agent, however, lacks such experience and
thus can not derive any meaning from the text. This is the point where
human intervention comes into play, to describe the patterns found in
given resources and to relate the extracted data to predefined set of
concepts. The specification of patterns in resources and the methods
for their extraction is implemented in scrapers.

27

3. Semantic network building toolset

Scrapers in SemNet

SemNet provides the base functionality for implementation of a scraper
in the class AbstractScraper, which is an object filter with the con-
tainer EntityDocument on input and Statement8 on the output. There
are only two methods to implement in a scraper: the scrape method,
which takes an EntityDocument as the argument and should use the
write method to output Statements, and getNamespace, which should
return the namespace in which the terms of the scraper’s vocabulary
reside. As to techniques used for the extraction, these are not limited
in any way. However, the use of XPath (potentially in conjunction with
regular expressions) is recommended and supported by means of the
XPathUtil class, which simplifies querying of the DOM tree.

As mentioned earlier, the scraped data must be related to some
concepts, usually defined in an ontology or a controlled vocabulary.
To support flexibility, the scrapers in SemNet do not describe data by
terms of the vocabulary of the built network, but use custom terms
residing in the namespace of the scraper. The vocabulary is declared
very simply, by annotating fields of type URI with the Term annotation,
which takes an optional String argument – textual definition of the
term. In summary, the conceptual independence allows for implement-
ing of the scraper even prior to making decisions about the ontology of
the network.

In processing chains, it will hardly ever be the case, that only a single
scraper is used, mainly because of the design decision of using one
scraper per entity type. To allow for using of multiple scrapers in one
chain, the ScraperWrapper processor is used, which acts as a router,
dispatching EntityDocuments to appropriate scrapers, based on the
set of scrapers listed in the entity descriptor contained in the received
EntityDocument. The option to have multiple scrapers process one
entity type makes it possible to develop a generic scraper, which could
be used to scrape certain structures common across various entity types.
An example of this could be a processor which would extract data
described by microformats.

8. The Statement class is one of the few classes, used in SemNet for working with
the RDF data model, that are a part of the Sesame API.

28

3. Semantic network building toolset

3.6.2 StatementMapper

This object filter, the StatementMapper, is what enables the scrapers
to be agnostic of the network’s ontology, by performing translation of
terms between vocabularies. The terms in question are objects of type
URI9. Configuration of this module is realised using the Mapping class,
which is a simple wrapper for a set of key–value pairs with the optional
specification of the association roles10 it pertains to. As implied by the
processor’s function, its input and output type is Statement.

3.6.3 SesameWriter

At the end of the chain for creation of a semantic network, the data
extracted from web resources by the crawler and given meaning to by
the scrapers, are persisted in a triple store11 – a database designed
specifically for storage of knowledge in the form of triples, which are
statements consisting of a subject, predicate and object. A simple con-
figuration is necessary for this processor’s functioning – the specification
of the type and parameters of the Sesame store to use. By default, the
native and RDBMS stores are supported. There is also an option to en-
able reasoning, by specifying the inferencer class to use. This processor
is an adapter for the Sesame database, but by virtue of the modular-
ity provided by POP, the system can easily be adapted to a different
product by implementing an object sink.

The operation of this processor is very simple – it is only responsible
for adding every received statement to the store. But it has one more
feature – bootstrapping. Prior to starting, it checks for the bootstrap
initialization parameter holding the name of a file containing state-
ments, all of which will be added to the database. This may be useful
for preparing the store for reasoning by preloading it with a knowledge
base.

9. The URI class is a part of the model of Sesame API.
10. The term association role is used here to denote one of subject, predicate or
object.
11. The Sesame database used in SemNet is actually a quad store, since in addition
to subject, predicate and object, it supports the storing of one more attribute – the
context. This feature is, however, not currently made use of by SemNet.

29

3. Semantic network building toolset

3.7 Usage

The processors implemented as a part of SemNet are intended for, but
not limited to utilisation in ways described in this text. In fact, poten-
tial users are encouraged to employ them for different purposes, or as
a part of processing chains other than the default, which is illustrated
in Figure 3.3. It is also possible to modify the default chain by adding
different processors.

HTMLCrawler

ScraperWrapper

HTML
documents

Sesame
triple store

SesameWriter

StatementMapper

<EntityDocument>
<Statement>

<Statement>

Figure 3.3: The default processing chain.

Processing jobs

This amount of flexibility in adjustment of the processing chains is pos-
sible due to the execution being realised in terms of processing jobs.
First, it might be worth to make a terminological distinction for clarifi-
cation of matters: the term processing chain is used to represent a con-
stellation of processors assembled for certain purpose, e.g. the Sem-
Net default chain for building of semantic networks, composed of the
crawler, scraper, mapper and a triple store writer. On the other hand,
a processing job is a specific arrangement of processors configured for
a specific task, like the building of a network of artworks. In short,
a processing job is an instance of a processing chain.

There is an executable class called JobRunner, responsible for the
execution of processing jobs. It takes one argument – the name of the

30

3. Semantic network building toolset

XML file describing the configuration of processors. When started, it
ensures the processors are of matching types (output of one matches
the input of the following), assembles them into a Pipe and starts it.
The processing halts either naturally, when the object source stops
emitting objects, or forcibly, by sending the interrupt signal to the pro-
gram. This design makes it possible to run processing jobs completely
automatically, using an operating system-provided task scheduler.

Host management

The crawler operates automatically, finding links, visiting web pages
periodically based on their update frequency, and thus incrementally
building the network. The database of links maintained by the crawler’s
URLManager can not be accessed directly using the SemNet API, apart
from one exception: the HostManager class has a command line inter-
face, providing the option to remove all URLs of one host, thus causing
a complete re-crawling of that host, and one other option, to completely
reset the state of the crawler by removing all managed hosts.

Querying

The Sesame database which contains the built network, offers a compre-
hensive set of functions for querying of the stored RDF graphs, with the
prominent means being the support for SPARQL and SeRQL query lan-
guages. For convenience, in SemNet there is a simple command line in-
terface to some functions of the Sesame API, in class QueryInterface.
The functionality provided is:

• listing resources with a given label,

• querying the type of a resource, either only the direct type, or
the full type,

• description of a resource – returning all statements with the
given resource in the role of subject or object,

• execution of tuple queries expressed in SeRQL.

In regard to querying the database with a RDF query language,
there is an observation that might seem obvious, but is still worth

31

3. Semantic network building toolset

noting. It is very important to formulate the queries reasonably, since
one set of tuples can be retrieved by many different queries, and there
can be tremendous differences in terms of performance, between the
variations. For example, to retrieve the name of the longest movie (M)
of some director (D), the query might be expressed in these two ways
(phrased in natural language): (1) select movie M directed by D, where
M is longer than every other movie directed by D, and (2) select all
movies directed by D, sort the results by duration in descending order,
return the first result. In the first query, many comparisons have to be
made to get the result, since all of the movies need to be compared
with each other. The second query, however, only performs sorting and
limiting, which makes it much easier to evaluate.

32

4 Semantic network of artworks

Besides the semantic network building toolset SemNet, the other out-
come of the thesis is a semantic network of works of art, hereinafter
called ArtNet. The purpose of this product is at least twofold. Firstly,
since it was built using the tools of SemNet, it is an informal proof
of its functionality. Secondly and more importantly, it finds its use in
methods of natural language processing and some other fields as well.
Applications, qualities and extent of this network are further discussed
in this chapter.

4.1 Design

The network was designed to meet the requirements established in the
assignment of this work. It was supposed to contain information on
works of any kind of art, with concepts mapped to WordNet synsets.
The kinds of art chosen for ArtNet are film and literature, mainly be-
cause of wide availability of online resources concerning these fields.
Two hosts have been selected as the sources of data for the network.
One of the main criteria for the choice of the hosts was introduced
in section 3.5.2 – the distinguishability of the entity type by URL, to
which both of the selected hosts comply. The scrapers used for data
extraction utilise mainly the XPath technology, combined with regular
expressions in cases where the data elements were not addressable by
XPath. The database of the network resides in a Sesame native store –
a file based triple store.

Applications

The network was primarily designed for natural language processing ap-
plications, mainly to aid in the automatic processing and understanding
of free text, acting as a lexical resource containing proper names of enti-
ties from the domain of art. However, it could find use in other areas of
research as well. For example, it could be used as a part of a knowledge
base of some intelligent agent, to support reasoning. Provided there
were no legal issues concerning the licensing of the contained data, it
could also serve as a public resource of information on works of art.

33

4. Semantic network of artworks

WordNet mapping

The extracted information is mapped to WordNet concepts using the
mapping defined in the wn_map.xml1 file, which is a configuration for
the StatementMapper. For this purpose, the OWL/RDF representa-
tion2 of WordNet 2.0 is used, where the terms are represented by deref-
erencable URIs and the rich structure of relationships of WordNet is
expressed in the OWL language and some of them also in RDF(S), to
support compatibility with agents incapable of OWL reasoning (which
is also the case of the Sesame framework used in SemNet).

To allow for wider spectrum of applications, the bootstrap option
of SesameWriter was used to preload the network with the WordNet
hyponymy set, which acts as a class hierarchy. This application of the
WordNet data is not available directly, but can be achieved by first
adding the following two statements to the database [12]:

1. wn20s:Synset rdfs:subClassOf rdfs:Class

2. wn20s:hyponymOf rdfs:subPropertyOf rdfs:subClassOf

The statements in the example3 express the facts that: (1) a Word-
Net synset should be considered a class in terms of RDFS, and (2) the
hyponymy relationship should be treated as the subclass relationship.
The benefit arising of having the database aware of this hierarchy, is the
possibility to automatically infer supertypes of every entity added to
the database. For example, in the case of statement: “the type of ‘Mor-
gan Freeman’ is actor”, the system automatically infers, that “Morgan
Freeman” is also a person and a living thing.4

1. Locations of files on the attached medium can be found in Appendix B.
2. The OWL representation of WordNet is created by W3C and is available at
http://www.w3.org/2006/03/wn/wn20/instances/.
3. The namespace wn20s refers to the WordNet 2.0 OWL representation schema
and stands for http://www.w3.org/2006/03/wn/wn20/schema/, and rdfs is the
namespace of RDF Schema – http://www.w3.org/2000/01/rdf-schema.
4. This example is simplified for easier comprehension. In fact, the statements in
the store are related to resource identifiers, not directly to literals, so they look
more like this: The resource http://www.csfd.cz/tvurce/92-morgan-freeman/
is of type actor, and is labelled “Morgan Freeman”.

34

http://www.w3.org/2006/03/wn/wn20/instances/
http://www.w3.org/2006/03/wn/wn20/schema/
http://www.w3.org/2000/01/rdf-schema

4. Semantic network of artworks

4.1.1 Selected sources

ČSFD5

The acronym stands for Česko-Slovenská filmová databáze (Czecho-
slovak film database) and despite its name, the database is not limited
to movies shot in Czech and Slovak Republic. At the time of writing, it
contained roughly 270 000 movies, 45 000 actors and 18 250 directors.
All of the content is maintained by a community of volunteers.

Most of the factual information available on the pages were col-
lected, including all available names of individual movies (the primary
and localised variants), genres, country of origin, year of release, dura-
tion, respective directors and actors and their birth dates. The classes
of objects collected from the host – film, actor and director are mapped
to WordNet senses6 film#1, actor#1 and director#3, respectively.

Databáze knih7

Similarly to ČSFD, this host contains community-created content, with
the total of 74 000 books and 24 000 authors. For the books, the col-
lected attributes are title, year of release, author, ISBN, and for the
authors it is their name, pseudonyms, date of birth and demise, and
nationality. One additional relationship is that between a short story
and the book containing it. The WordNet concepts corresponding to
the entity types are writer#1, book#1 and short story#1.

4.2 Properties

In terms of quality of the data, the contents of the network are on the
same level as the chosen source hosts. As to the extent of the network, it
contains 244 000 movies, 58 000 actors/directors, 73 000 books, 23 000
literary authors and millions of relationships.

5. ČSFD is located at http://www.csfd.cz/.
6. The number after the hash (#) is the word sense number.
7. Databáze knih is located at http://www.databazeknih.cz/.

35

http://www.csfd.cz/
http://www.databazeknih.cz/

5 Conclusion

In this thesis, an approach to building of domain-specific semantic net-
works by using the methods of web crawling and scraping has been
presented. The goals of the thesis – to create tools for building of such
networks, and to build a network of works of art – have been achieved,
if not surpassed, by developing a custom web crawler and using it for
creation of the network. The tools have been developed with modular-
ity and extensibility in mind and are designed as a framework, thus
opening possibilities for further development.

36

Bibliography

[1] Russell Ackoff. From data to wisdom. Journal of Applied Systems
Analysis, 16:3–9, 1989.

[2] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986 (Standard), January
2005.

[3] Randall Davis, Howard Shrobe, and Peter Szolovits. What is a
knowledge representation? AI Magazine, 14(1):17–33, 1993.

[4] Christiane Fellbaum. WordNet: an electronic lexical database.
Language, speech, and communication. MIT Press, 1998.

[5] Thomas Gruber. Toward principles for the design of ontologies
used for knowledge sharing. International Journal of Human-
Computer Studies, 43:907–928, November 1995.

[6] Thomas Gruber. Ontology. In Ling Liu and Tamer M. Özsu,
editors, Encyclopedia of Database System. Springer-Verlag, 2008.

[7] Sang Ho Lee, Sung Jin Kim, and Seok Hoo Hong. On URL nor-
malization. In Osvaldo Gervasi, Marina Gavrilova, Vipin Kumar,
Antonio Laganà, Heow Lee, Youngsong Mun, David Taniar, and
Chih Tan, editors, Computational Science and Its Applications –
ICCSA 2005, volume 3481 of Lecture Notes in Computer Science,
pages 122–130. Springer Berlin / Heidelberg, 2005.

[8] Viviana Mascardi, Valentina Cordì, and Paolo Rosso. A compari-
son of upper ontologies. Technical Report DISI-TR-06-21, Dipar-
timento di Informatica e Scienze dell’Informazione (DISI), Univer-
sità degli Studi di Genova, Via Dodecaneso 35, 16146, Genova,
Italy, 2006.

[9] M. Mealling and R. Denenberg. Report from the Joint W3C/IETF
URI Planning Interest Group: Uniform Resource Identifiers
(URIs), URLs, and Uniform Resource Names (URNs): Clarifica-
tions and Recommendations. RFC 3305 (Informational), August
2002.

37

5. Conclusion

[10] Marvin Minsky. A framework for representing knowledge. Techni-
cal report, MIT, Cambridge, MA, USA, 1974.

[11] NISO Press. Understanding Metadata. National Information Stan-
dards, 2004.

[12] Guus Schreiber, Mark van Assem, and Aldo Gangemi. RDF/OWL
Representation of WordNet. W3C working draft, W3C, June 2006.
http://www.w3.org/TR/2006/WD-wordnet-rdf-20060619/.

[13] John F. Sowa. Semantic networks. In Stuart C. Shapiro, editor,
Encyclopedia of Artificial Intelligence. Wiley, 2 edition, 1992.

[14] Chaim Zins. Conceptual approaches for defining data, information,
and knowledge. Journal of the American Society for Information
Science and Technology, 58:479–493, 2007.

38

Appendix A

Crawler configuration

<crawler>
<dbLayer>

<driver>org.postgresql.Driver</driver>
<url>jdbc:postgresql://localhost:5432/postgres</url>
<user>artnet</user>
<password>artnet</password>
<schema>artnet</schema>
<autoCommit>true</autoCommit>

</dbLayer>
<threadsPerHost>2</threadsPerHost>
<globalCrawlDelayMinimum>500</globalCrawlDelayMinimum>
<policyIgnored>false</policyIgnored>
<fakeReferrer>true</fakeReferrer>
<hosts>

<host>
<baseURL>http://www.csfd.cz/</baseURL>
<name>CSFD.cz</name>
<charset>UTF-8</charset>
<crawlDelay>1500</crawlDelay>
<sourceFirst>true</sourceFirst>
<source>

<pattern update="1">/kino/?</pattern>
<pattern update="1">/tvurci/?</pattern>
<pattern update="60">/tvurci/.+</pattern>

</source>
<entities>

<entity weight="3">
<pattern update="365">/film/[^/]+/?</pattern>
<scraper>

xsmeral.artnet.scraper.CSFDScraper$Film
</scraper>

</entity>
<entity weight="2">

<pattern update="365">/tvurce/[^/]+/?</pattern>
<scraper>

xsmeral.artnet.scraper.CSFDScraper$Creator
</scraper>

</entity>
</entities>

</host>

39

5. Conclusion

<host>
<baseURL>http://www.databazeknih.cz/</baseURL>
<name>DatabazeKnih.cz</name>
<charset>UTF-8</charset>
<crawlDelay>1500</crawlDelay>
<sourceFirst>true</sourceFirst>
<source>

<pattern update="1">/</pattern>
<pattern update="1">/dnesni-autori/?</pattern>
<pattern update="1">/dnesni-knihy/?</pattern>
<pattern update="1">/dnesni-povidky/?</pattern>
<pattern update="365">/autori/?</pattern>
<pattern update="365">

/index.php\?(?=.*stranka=autori)(?=.*id=\d+).*
</pattern>
<pattern update="365">/vydane-knihy/[^/]+</pattern>

</source>
<entities>

<entity weight="1">
<pattern update="365">/knihy/[^/]+</pattern>
<scraper>xsmeral.artnet.scraper.DBKnih$Kniha</scraper>

</entity>
<entity weight="1">

<pattern update="365">/povidky/[^/]+/[^/]+</pattern>
<scraper>xsmeral.artnet.scraper.DBKnih$Povidka</scraper>

</entity>
<entity weight="1">

<pattern update="365">/autori/[^/]+</pattern>
<scraper>xsmeral.artnet.scraper.DBKnih$Autor</scraper>

</entity>
</entities>

</host>
</hosts>

</crawler>

40

Appendix B

Contents of the attached CD

/

data.................................Collected data of ArtNet

sesameData............The network, in Sesame native store format

pg_dump................State of the crawler, dump of Postgres DB

doc....................................Javadoc documentation

PipedObjectProcessor

SemNet

proj........................NetBeans projects with source files

ArtNetScrapers.......................The scrapers for ArtNet

CustomTaglets.............. Auxilliary classes for documentation

PipedObjectProcessor................. Piped object processor

SemNet........................Semantic network building toolset

sample.....................Sample semantic network – ArtNet

artnet........Configuration files for crawler, mapper, Sesame writer

bin........................... The runtime of SemNet, JAR files

lib....................................Third-party libraries

scrapers..........................JARs of the ArtNet scrapers

serql..................................Sample SeRQL queries

sql...........SQL scripts for creation of DB schema and monitoring

41

	Introduction
	Data, information, knowledge
	 Knowledge representation
	 Metadata
	 Ontology
	 Upper ontology

	 Semantic networks
	 History
	 Types

	 The road to semantic web
	 Contemporary web
	 Web as a graph
	 Resource identification
	 RDF(S)
	 OWL

	Semantic network building toolset
	 Requirements
	 Platform
	 Third-party software
	 Piped object processor
	 Architecture
	 Development

	 Crawler
	 Addressed issues
	 Design

	 Other modules
	 Scrapers
	 StatementMapper
	 SesameWriter

	 Usage

	Semantic network of artworks
	 Design
	 Selected sources

	 Properties

	Conclusion

